Back to Search Start Over

Fracture Properties of Nitrogen–Slick Water Composite Fracturing in Coal Reservoir.

Authors :
Wang, Menglong
Tian, Lin
Wu, Jinghao
Cao, Yunxing
Wang, Li
Shi, Bin
Sun, Mingyue
Liu, Shimin
Hu, Yunbing
Source :
Processes; Sep2024, Vol. 12 Issue 9, p1949, 15p
Publication Year :
2024

Abstract

Nitrogen–slick water composite fracturing is a novel, recently developed fracturing technology. Due to its impact on increasing permeability, this technology outperforms hydraulic fracturing. This study adopted the horizontal well XJ-1L, Xinjing coal mine, Qinshui Basin, China, as a study area to statistically analyze the fracture properties, stress drop, and b-value distribution characteristics of 1217 effective micro-seismic events generated during nitrogen–water composite fracturing. The results show that: (1) gradually reducing the proportion of gas in fracturing fluid reduced the proportion of tensile fractures at a ratio of between 15.6% and 0.8%, whereas the proportion of strike-slip fractures gradually increased by between 1.6% and 15.2%; (2) the stress drop and b-values in the nitrogen fracturing (NF) stage, representative of stress disturbance, exceeded those in the hydraulic fracturing (HF) stage, consistent with greater numbers of tensile fractures formed in the NF stage; (3) the greater number of tensile fractures and their increasing permeability could be explained based on the influences of gas compressibility and pore pressure on coal fractures. This study provides a theoretical and practical basis for optimizing the exploitation of low-permeability coal reservoirs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279717
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Processes
Publication Type :
Academic Journal
Accession number :
180014327
Full Text :
https://doi.org/10.3390/pr12091949