Back to Search
Start Over
Integrating crystallographic and computational approaches to carbon-capture materials for the mitigation of climate change.
- Source :
- Journal of Materials Chemistry A; 10/14/2024, Vol. 12 Issue 38, p25678-25695, 18p
- Publication Year :
- 2024
-
Abstract
- This article presents an overview of the current state of the art in the structure determination of microporous carbon-capture materials, as discussed at the recent NIST workshop "Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change". The continual rise in anthropogenic CO<subscript>2</subscript> concentration and its effect on climate change call for the implementation of carbon capture technologies to reduce the CO<subscript>2</subscript> concentration in the atmosphere. Porous solids, including metal–organic frameworks (MOFs), are feasible candidates for gas capture and storage applications. However, determining the structure of these materials represents a significant obstacle in their development into advanced sorbents. The existing difficulties can be overcome by integrating crystallographic methods and theoretical modeling. The workshop gathered experimentalists and theorists from academia, government, and industry to review this field and identify approaches, including collaborative opportunities, required to develop tools for rapid determination of the structures of porous solid sorbents and the effect of structure on the carbon capture performance. We highlight the findings of that workshop, especially in the need for reference materials, standardized procedures and reporting of sorbent activation and adsorption measurements, standardized reporting of theoretical calculations, and round-robin structure determination. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20507488
- Volume :
- 12
- Issue :
- 38
- Database :
- Complementary Index
- Journal :
- Journal of Materials Chemistry A
- Publication Type :
- Academic Journal
- Accession number :
- 180045936
- Full Text :
- https://doi.org/10.1039/d4ta04136d