Back to Search Start Over

Study on Transportation Carbon Emissions in Tibet: Measurement, Prediction Model Development, and Analysis.

Authors :
Bo, Wu
Zhao, Kunming
Cheng, Gang
Wang, Yaping
Zhang, Jiazhe
Cheng, Mingkai
Yang, Can
Da, Wa
Source :
Sustainability (2071-1050); Oct2024, Vol. 16 Issue 19, p8419, 26p
Publication Year :
2024

Abstract

In recent years, the socio-economic development in the Tibet region of China has experienced substantial growth. However, transportation increasingly strains the region's fragile ecological environment. Most studies overlook the accurate measurement and analysis of factors influencing traffic carbon emissions in Tibet due to data scarcity. To address this, this paper applies an improved traffic carbon emissions model, using transportation turnover data to estimate emissions in Tibet from 2008 to 2020. Simultaneously, the estimated traffic carbon emissions in Tibet served as the predicted variable, and various machine learning algorithms, including Radial Basis Function Support Vector Machine (RBF-SVM), eXtreme Gradient Boosting (XGBoost), Random Forest, and Gradient Boosting Decision Tree (GBDT) are employed to conduct an initial comparison of the constructed prediction models using three-fold cross-validation and multiple evaluation metrics. The best-performing model undergoes further optimization using Grid Search (GS) and Real-coded Genetic Algorithm (RGA). Finally, the central difference method and Local Interpretable Model-Agnostic Explanation (LIME) algorithm are used for local sensitivity and interpretability analyses on twelve core variables. The results assess each variable's contribution to the model's output, enabling a comprehensive analysis of their impact on Tibet's traffic carbon emissions. The findings demonstrate a significant upward trend in Tibet's traffic carbon emissions, with road transportation and civil aviation being the main contributors. The RBF-SVM algorithm is most suitable for predicting traffic carbon emissions in this region. After GS optimization, the model's R<superscript>2</superscript> value exceeded 0.99, indicating high predictive accuracy and stability. Key factors influencing traffic carbon emissions in Tibet include civilian vehicle numbers, transportation land-use area, transportation output value, urban green coverage areas, per capita GDP, and built-up area. This paper provides a systematic framework and empirical support for measuring, predicting, and analyzing factors influencing traffic carbon emissions in Tibet. It employs innovative measurement methods, optimized machine learning models, and detailed sensitivity and interpretability analyses. The results can guide regional carbon reduction targets and promote green sustainable development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20711050
Volume :
16
Issue :
19
Database :
Complementary Index
Journal :
Sustainability (2071-1050)
Publication Type :
Academic Journal
Accession number :
180272109
Full Text :
https://doi.org/10.3390/su16198419