Back to Search
Start Over
A further look at the overpartition function modulo 24 and 25.
- Source :
- Ramanujan Journal; Nov2024, Vol. 65 Issue 3, p1159-1179, 21p
- Publication Year :
- 2024
-
Abstract
- In this paper, we describe a systematic way of obtaining the exact generating functions for p ¯ (2 n) , p ¯ (4 n) (first proved by Fortin et al.), p ¯ (8 n) , p ¯ (16 n) , etc. where p ¯ (n) denotes the number of overpartitions of n. We further establish several new infinite families of congruences modulo 2 4 and 2 5 for p ¯ (n) . For example, we prove that for all n , α , β ≥ 0 and primes p ≥ 5 , p ¯ 3 4 α + 1 p 2 β + 1 24 p n + 24 j + 7 p ≡ 0 (mod 2 5) and p ¯ 3 2 α + 1 (24 n + 23) ≡ 0 (mod 2 5) , where ( - 6 p) = - 1 and 1 ≤ j ≤ p - 1 . The last congruence was proved by Xiong (Int J Number Theory 12:1195–1208, 2016) for modulo 2 4 . [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13824090
- Volume :
- 65
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Ramanujan Journal
- Publication Type :
- Academic Journal
- Accession number :
- 180303398
- Full Text :
- https://doi.org/10.1007/s11139-024-00933-3