Back to Search Start Over

Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete.

Authors :
Bernal, Susan A.
Dhandapani, Yuvaraj
Elakneswaran, Yogarajah
Gluth, Gregor J. G.
Gruyaert, Elke
Juenger, Maria C. G.
Lothenbach, Barbara
Olonade, Kolawole A.
Sakoparnig, Marlene
Shi, Zhenguo
Thiel, Charlotte
Van den Heede, Phillip
Vanoutrive, Hanne
von Greve-Dierfeld, Stefanie
De Belie, Nele
Provis, John L.
Source :
Materials & Structures; Oct2024, Vol. 57 Issue 8, p1-31, 31p
Publication Year :
2024

Abstract

The chemical reaction between CO<subscript>2</subscript> and a blended Portland cement concrete, referred to as carbonation, can lead to reduced performance, particularly when concrete is exposed to elevated levels of CO<subscript>2</subscript> (i.e., accelerated carbonation conditions). When slight changes in concrete mix designs or testing conditions are adopted, conflicting carbonation results are often reported. The RILEM TC 281-CCC 'Carbonation of Concrete with Supplementary Cementitious Materials' has conducted a critical analysis of the standardised testing methodologies that are currently applied to determine carbonation resistance of concrete in different regions. There are at least 17 different standards or recommendations being actively used for this purpose, with significant differences in sample curing, pre-conditioning, carbonation exposure conditions, and methods used for determination of carbonation depth after exposure. These differences strongly influence the carbonation depths recorded and the carbonation coefficient values calculated. Considering the importance of accurately determining carbonation potential of concrete, not just for predicting their durability performance, but also for determining the amount of CO<subscript>2</subscript> that concrete can re-absorb during or after its service life, it is imperative to recognise the applicability and limitations of the results obtained from different tests. This will enable researchers and practitioners to adopt the most appropriate testing methodologies to evaluate carbonation resistance, depending on the purpose of the conclusions derived from such testing (e. g. materials selection, service life prediction, CO<subscript>2</subscript> capture potential). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13595997
Volume :
57
Issue :
8
Database :
Complementary Index
Journal :
Materials & Structures
Publication Type :
Academic Journal
Accession number :
180369616
Full Text :
https://doi.org/10.1617/s11527-024-02424-9