Back to Search
Start Over
Bond Strength to Lithium-Disilicate Ceramic after Different Surface Cleaning Approaches.
- Source :
- Journal of Adhesive Dentistry; 2024, Vol. 26 Issue 1, p11-17, 7p
- Publication Year :
- 2024
-
Abstract
- Purpose: To evaluate the effect of different lithium-disilicate (LiSi) glass-ceramic surface decontamination procedures on the shear bond strength (SBS) to resin cement. Materials and Methods: Seventy CAD/CAM LiSi ceramic specimens (IPS e.max CAD, Ivoclar) were cut and sintered. Fifty specimens were treated with 5% hydrofluoric acid (HF) for 20 s, while 20 were left untreated. All 70 specimens were then contaminated with human saliva and try-in silicone paste. The following surface cleaning methods were investigated (n = 10): C: water rinsing (control); PA: 37% H3PO4 etching for 20 s; E: 70% ethanol applied for 20 s; CP: cleaning paste (Ivoclean, Ivoclar) brushed for 20 s; HFSEP: self-etching ceramic primer (Monobond Etch&Prime, Ivoclar) rubbed for 20 s; HF: 5% HF applied for 20 s or no HF etching prior to contamination; SEP: self-etching ceramic primer rubbed for 20 s and no HF etching prior to contamination. Composite cylinders were created and luted with an adhesive resin cement to the decontaminated surfaces. After storage for 24 h at 37°C, the SBS test was conducted. Two fractured specimens per group were observed under SEM to perform fractographic analysis. The data were statistically analyzed with p set at <0.05. Results: The type of surface cleaning approach influenced bond strength (p < 0.001). HFSEP, SEP, and HF attained higher SBS (p < 0.001) compared to other groups. None of the approaches were able to completely remove contaminants from the ceramic surfaces. SEM images showed residual traces of contaminants on CP-treated surfaces. Conclusions: The self-etching ceramic primer enhanced bond strength to contaminated LiSi ceramic surfaces, irrespective of previous treatment with hydrofluoric acid. [ABSTRACT FROM AUTHOR]
- Subjects :
- SURFACE cleaning
FRACTOGRAPHY
ADHESIVE cements
BOND strengths
HYDROFLUORIC acid
Subjects
Details
- Language :
- English
- ISSN :
- 14615185
- Volume :
- 26
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Journal of Adhesive Dentistry
- Publication Type :
- Academic Journal
- Accession number :
- 180577199
- Full Text :
- https://doi.org/10.3290/j.jad.b4874329