Back to Search Start Over

Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests.

Authors :
Paluots, Teele
Liira, Jaan
Leis, Mare
Laarmann, Diana
Põldveer, Eneli
Franklin, Jerry F.
Korjus, Henn
Source :
Forests (19994907); Nov2024, Vol. 15 Issue 11, p2035, 28p
Publication Year :
2024

Abstract

We evaluated the long-term impacts of various forest management practices on the structure and biodiversity of Estonian hemiboreal forests, a unique ecological transition zone between temperate and boreal forests, found primarily in regions with cold winters and moderately warm summers, such as the northern parts of Europe, Asia, and North America. The study examined 150 plots across stands of different ages (65–177 years), including commercial forests and Natura 2000 habitat 9010* "Western Taiga". These plots varied in stand origin—multi-aged (trees of varying ages) versus even-aged (uniform tree ages), management history—historical (practices before the 1990s) and recent (post-1990s practices), and conservation status—protected forests (e.g., Natura 2000 areas) and commercial forests focused on timber production. Data on forest structure, including canopy tree diameters, deadwood volumes, and species richness, were collected alongside detailed field surveys of vascular plants and bryophytes. Management histories were assessed using historical maps and records. Statistical analyses, including General Linear Mixed Models (GLMMs), Multi-Response Permutation Procedures (MRPP), and Indicator Species Analysis (ISA), were used to evaluate the effects of origin, management history, and conservation status on forest structure and species composition. Results indicated that multi-aged origin forests had significantly higher canopy tree diameters and deadwood volumes compared to even-aged origin stands, highlighting the benefits of varied-age management for structural diversity. Historically managed forests showed increased tree species richness, but lower deadwood volumes, suggesting a biodiversity–structure trade-off. Recent management, however, negatively impacted both deadwood volume and understory diversity, reflecting short-term forestry consequences. Protected areas exhibited higher deadwood volumes and bryophyte richness compared to commercial forests, indicating a small yet persistent effect of conservation strategies in sustaining forest complexity and biodiversity. Indicator species analysis identified specific vascular plants and bryophytes as markers of long-term management impacts. These findings highlight the ecological significance of integrating historical legacies and conservation priorities into modern management to support forest resilience and biodiversity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994907
Volume :
15
Issue :
11
Database :
Complementary Index
Journal :
Forests (19994907)
Publication Type :
Academic Journal
Accession number :
181170056
Full Text :
https://doi.org/10.3390/f15112035