Back to Search Start Over

Model-free distributed state estimation with local measurements.

Authors :
Gao, Kepan
Ran, Chenyu
Wang, Xiaoling
Liu, Liu
Jiang, Guo-Ping
Source :
Chaos; Nov2024, Vol. 34 Issue 11, p1-13, 13p
Publication Year :
2024

Abstract

In this paper, the state estimation problem of physical plants with unknown system dynamic is revisited from the perspective of limited output information measurement, which corresponds to those with characteristics of high-dimensional, wide-area coverage and scatter. Given this fact, a network of sensors are used to carry out the measurement with each one accessing only partial outputs of the targeted systems and a novel model-free state estimation approach, named distributed stochastic variational inference state estimation, is proposed. The key idea of this method is to compensate for the impacts of local output measurements by adding nearest-neighbor rule-based information interaction among estimators to complete the state estimation. It finds from the numerical experiments that the proposed method has clear advantages in both estimation accuracy and speed, and it also provides guidance on how to improve the efficiency of state estimation under local measurements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10541500
Volume :
34
Issue :
11
Database :
Complementary Index
Journal :
Chaos
Publication Type :
Academic Journal
Accession number :
181208077
Full Text :
https://doi.org/10.1063/5.0235313