Back to Search Start Over

Cannabidiol-Loaded Lipid Nanoparticles Incorporated in Polyvinyl Alcohol and Sodium Alginate Hydrogel Scaffold for Enhancing Cell Migration and Accelerating Wound Healing.

Authors :
Lapmanee, Sarawut
Bhubhanil, Sakkarin
Charoenphon, Natthawut
Inchan, Anjaree
Bunwatcharaphansakun, Phichaporn
Khongkow, Mattaka
Namdee, Katawut
Source :
Gels (2310-2861); Dec2024, Vol. 10 Issue 12, p843, 18p
Publication Year :
2024

Abstract

Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD's inherent instability and low bioavailability. This study developed and characterized a novel hydrogel scaffold composed of CBD-loaded LNPs (CBD/LNPs) integrated into a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix, designed to enhance wound repair and mitigate inflammation. The characteristics of the hydrogel scaffold were observed including the degree of swelling and LNPs' release profiles. Furthermore, in the results, CBD/LNPs displayed enhanced stability and reduced cytotoxicity compared to unencapsulated CBD. In vitro assays demonstrated that CBD/LNPs significantly promoted fibroblast migration in gap-closure wound models and reduced intracellular reactive oxygen species, supporting their potential as a biocompatible and efficacious agent for cellular repair and oxidative stress attenuation. In vivo experiments using adult male Wistar rats with aseptic cutaneous wounds revealed that treatment with CBD/LNP-PVA/SA hydrogel scaffold significantly accelerated wound closure relative to blank hydrogel controls, demonstrating a substantial reduction in the wound area over time. Histological analysis confirms notable improvements in skin morphology in wounds treated with CBD/LNP-PVA/SA hydrogel scaffold with evidence of accelerated epithelialization, enhanced collagen deposition, and increased dermal thickness and vascularization. Additionally, skin histology showed a more organized epidermal layer and reduced inflammatory cell infiltration in CBD/LNP-PVA/SA hydrogel scaffold-treated wounds, corresponding to a 35% increase in the wound closure rate by day 28 post-treatment. These findings suggest that CBD/LNP-PVA/SA hydrogel scaffolds facilitate inflammation resolution and structural wound healing through localized, sustained CBD delivery. The dual anti-inflammatory and wound-healing effects position CBD/LNP-PVA/SA hydrogel scaffold as a promising approach for chronic wound management. Future investigations are warranted to elucidate the mechanistic pathways by which CBD modulates the skin architecture and to explore its translational applications in clinical wound care. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23102861
Volume :
10
Issue :
12
Database :
Complementary Index
Journal :
Gels (2310-2861)
Publication Type :
Academic Journal
Accession number :
181942436
Full Text :
https://doi.org/10.3390/gels10120843