Back to Search Start Over

Limbic-predominant age-related TDP-43 encephalopathy in the oldest old: a population-based study.

Authors :
Mikhailenko, Elizaveta
Colangelo, Kia
Tuimala, Jarno
Kero, Mia
Savola, Sara
Raunio, Anna
Kok, Eloise H
Tanskanen, Maarit
Mäkelä, Mira
Puttonen, Henri
Mäyränpää, Mikko I
Kumar, Darshan
Kaivola, Karri
Paetau, Anders
Tienari, Pentti J
Polvikoski, Tuomo
Myllykangas, Liisa
Source :
Brain: A Journal of Neurology; Jan2025, Vol. 148 Issue 1, p154-167, 14p
Publication Year :
2025

Abstract

Population-based cohort studies are essential for understanding the pathological basis of dementia in older populations. Previous studies have shown that limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) increases with age, but there have been only a few studies, which have investigated this entity in a population-based setting. Here we studied the frequency of LATE-NC and its associations with other brain pathologies and cognition in a population aged ≥ 85 years. The population-based Vantaa 85+ study cohort includes all 601 individuals aged ≥85 years who were living in Vantaa, Finland in 1991. A neuropathological examination was performed on 304 subjects (50.5%) and LATE-NC staging was possible in 295 of those. Dementia status and Mini-Mental State Examination (MMSE) scores were defined in the baseline study and three follow-ups (1994–99). The LATE-NC stages were determined based on TDP-43 immunohistochemistry, according to recently updated recommendations. Arteriolosclerosis was digitally assessed by calculating the average sclerotic index of five random small arterioles in amygdala and hippocampal regions, and frontal white matter. The association of LATE-NC with arteriolosclerosis and previously determined neuropathological variables including Alzheimer's disease neuropathologic change (ADNC), Lewy-related pathology (LRP), hippocampal sclerosis (HS) and cerebral amyloid angiopathy (CAA), and cognitive variables were analysed by Fisher's exact test, linear and logistic regression (univariate and multivariate) models. LATE-NC was found in 189 of 295 subjects (64.1%). Stage 2 was the most common (28.5%) and stage 3 the second most common (12.9%), whereas stages 1a, 1b and 1c were less common (9.5%, 5.1% and 8.1%, respectively). Stages 1a (P < 0.01), 2 (P < 0.001) and 3 (P < 0.001) were significantly associated with dementia and lower MMSE scores. LATE-NC was associated with ADNC (P < 0.001), HS (P < 0.001), diffuse neocortical LRP (P < 0.002), and arteriolosclerosis in amygdala (P < 0.02). In most cases LATE-NC occurred in combination alongside other neuropathological changes. There were only six subjects with dementia who had LATE-NC without high levels of ADNC or LRP (2% of the cohort, 3% of the cases with dementia), and five of these had HS. In all multivariate models, LATE-NC was among the strongest independent predictors of dementia. When LATE-NC and ADNC were assessed in a multivariate model without other dementia-associated pathologies, the attributable risk was higher for LATE-NC than ADNC (24.2% versus 18.6%). This population-based study provides evidence that LATE-NC is very common and one of the most significant determinants of dementia in the general late-life aged population. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00068950
Volume :
148
Issue :
1
Database :
Complementary Index
Journal :
Brain: A Journal of Neurology
Publication Type :
Academic Journal
Accession number :
182284248
Full Text :
https://doi.org/10.1093/brain/awae212