Back to Search Start Over

Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors.

Authors :
Li De-Pei
Atnip Lindsay M
Chen Shao-Rui
Pan Hui-Lin
Source :
Journal of Neurophysiology; Jan2005, Vol. 93 Issue 1, p393-402, 10p
Publication Year :
2005

Abstract

Neurons in the paraventricular nucleus (PVN) that project to the brain stem and spinal cord are important for autonomic regulation. The excitability of preautonomic PVN neurons is controlled by the noradrenergic input from the brain stem. In this study, we determined the role of alpha(2) adrenergic receptors in the regulation of excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were recorded using whole cell voltage-clamp techniques on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Bath application of 5-20 muM clonidine, an alpha(2) receptor agonist, significantly reduced the amplitude of evoked GABAergic IPSCs in a dose-dependent manner. Also, 10 microM clonidine significantly decreased the frequency (from 2.68 +/- 0.41 to 1.22 +/- 0.40 Hz) but not the amplitude of miniature IPSCs (mIPSCs), and this effect was blocked by the alpha(2) receptor antagonist yohimbine. Furthermore, clonidine increased the paired-pulse ratio of evoked IPSCs from 1.25 +/- 0.05 to 1.61 +/- 0.08 (P < 0.05). On the other hand, clonidine had little effect on evoked glutamatergic EPSCs, mEPSCs, and the paired-pulse ratio of evoked EPSCs in most labeled cells examined. Additionally, immunofluorescence labeling revealed that the alpha(2A) receptor and GABA immunoreactivities were co-localized in close apposition to labeled PVN neurons. Collectively, these data suggest that stimulation of alpha(2) adrenergic receptors primarily attenuates GABAergic inputs to PVN output neurons to the spinal cord. The presynaptic alpha(2) receptors function as heteroreceptors to modulate synaptic GABA release and contribute to the hypothalamic regulation of sympathetic outflow. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223077
Volume :
93
Issue :
1
Database :
Complementary Index
Journal :
Journal of Neurophysiology
Publication Type :
Academic Journal
Accession number :
18254267
Full Text :
https://doi.org/10.1152/jn.00564.2004