Back to Search Start Over

The Role of Kinetic Instabilities and Waves in Collisionless Magnetic Reconnection.

Authors :
Graham, D. B.
Cozzani, G.
Khotyaintsev, Yu. V.
Wilder, V. D.
Holmes, J. C.
Nakamura, T. K. M.
Büchner, J.
Dokgo, K.
Richard, L.
Steinvall, K.
Norgren, C.
Chen, L.-J.
Ji, H.
Drake, J. F.
Stawarz, J. E.
Eriksson, S.
Source :
Space Science Reviews; Feb2025, Vol. 221 Issue 1, p1-48, 48p
Publication Year :
2025

Abstract

Magnetic reconnection converts magnetic field energy into particle energy by breaking and reconnecting magnetic field lines. Magnetic reconnection is a kinetic process that generates a wide variety of kinetic waves via wave-particle interactions. Kinetic waves have been proposed to play an important role in magnetic reconnection in collisionless plasmas by, for example, contributing to anomalous resistivity and diffusion, particle heating, and transfer of energy between different particle populations. These waves range from below the ion cyclotron frequency to above the electron plasma frequency and from ion kinetic scales down to electron Debye length scales. This review aims to describe the progress made in understanding the relationship between magnetic reconnection and kinetic waves. We focus on the waves in different parts of the reconnection region, namely, the diffusion region, separatrices, outflow regions, and jet fronts. Particular emphasis is placed on the recent observations from the Magnetospheric Multiscale (MMS) spacecraft and numerical simulations, which have substantially increased the understanding of the interplay between kinetic waves and reconnection. Some of the ongoing questions related to waves and reconnection are discussed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00386308
Volume :
221
Issue :
1
Database :
Complementary Index
Journal :
Space Science Reviews
Publication Type :
Academic Journal
Accession number :
183066840
Full Text :
https://doi.org/10.1007/s11214-024-01133-7