Back to Search Start Over

A Hierarchical Energy-Efficient Framework for Data Aggregation in Wireless Sensor Networks.

Authors :
Chen, Yuanzhu Peter
Liestman, Arthur L.
Jiangchuan Liu
Source :
IEEE Transactions on Vehicular Technology; May2006, Vol. 55 Issue 3, p789-796, 8p, 3 Black and White Photographs, 3 Charts, 3 Graphs
Publication Year :
2006

Abstract

A network of sensors can be used to obtain state-based data from the area in which they are deployed. To reduce costs, the data, sent via intermediate sensors to a sink, are often aggregated (or compressed). This compression is done by a subset of the sensors called ‘aggregators.’ Inasmuch as sensors are usually equipped with small and unreplenishable energy reserves, a critical issue is to strategically deploy an appropriate number of aggregators so as to minimize the amount of energy consumed by transporting and aggregating the data. In this paper, the authors first study single-level aggregation and propose an Energy-Efficient Protocol for Aggregator Selection (EPAS) protocol. Then, they generalize it to an aggregation hierarchy and extend EPAS to Hierarchical EPAS. The optimal number of aggregators with generalized compression and power-consumption models was derived, and fully distributed algorithms for aggregator selection were presented. Simulation results show that the algorithms significantly reduce the energy consumption for data collection in wireless sensor networks. Moreover, the algorithms do not rely on particular routing protocols and are thus applicable to a broad spectrum of application environments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
55
Issue :
3
Database :
Complementary Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
21158825
Full Text :
https://doi.org/10.1109/TVT.2006.873841