Back to Search Start Over

Evidence for heat losses via party wall cavities in masonry construction.

Authors :
Lowe, R. J.
Wingfield, J.
Bell, M.
Bell, J. M.
Source :
Building Services Engineering Research & Technology; May2007, Vol. 28 Issue 2, p161-181, 21p, 2 Black and White Photographs, 4 Diagrams, 6 Charts, 3 Graphs
Publication Year :
2007

Abstract

This paper presents empirical evidence and analysis that supports the existence of a significant heat loss mechanism resulting from air movement through cavities in party walls in masonry construction. A range of heat loss experiments were undertaken as part of the Stamford Brook housing field trial in Altrincham in the United Kingdom. Co-heating tests showed a large discrepancy between the predicted and measured whole house heat loss coefficients. Analysis of the co-heating results, along with internal temperature data, thermal imaging and a theoretical analysis indicated that the most likely explanation for the discrepancy was bypassing of the thermal insulation via the uninsulated party wall cavities. The data show that such a bypass mechanism is potentially the largest single contributor to heat loss in terraced dwellings built to the 2006 revision of the Building Regulations. A comparable convective heat bypass associated with masonry party walls was identified in the late 1970s during the course of the Twin Rivers Project in the United States, albeit in a somewhat different construction from that used at Stamford Brook. A similar effect was also reported in the United Kingdom in the mid 1990s. However, it appears that no action was taken at that time either to confirm the results, to develop any technical solutions, or to amend standards for calculating heat losses from buildings. Current conventions for heat loss calculations in the United Kingdom do not take account of heat losses associated with party walls and it is suggested by the authors that such conventions may need to be updated to take account of the effect described in this paper. In the final part of the paper, the authors propose straightforward solutions to prevent bypassing of roof insulation via party walls by for example filling the cavity of the party wall with mineral fibre insulation, or by inserting a cavity closer across the cavity in the plane of the roof insulation. Practical application: The heat bypass mechanism described in this paper is believed by the authors to contribute to a significant proportion of heat loss from buildings in the UK constructed with clear cavities such as those found in separating walls between cavity masonry dwellings. It is proposed that relatively simple design changes could be undertaken to eliminate such heat loss pathways from new buildings. In addition, simple and cost effective measures are envisaged that could be used to minimise or eliminate the bypass from existing buildings. Such an approach could give rise to a significant reduction in carbon emissions from UK housing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01436244
Volume :
28
Issue :
2
Database :
Complementary Index
Journal :
Building Services Engineering Research & Technology
Publication Type :
Academic Journal
Accession number :
26243091
Full Text :
https://doi.org/10.1177/0143624407077196