Back to Search Start Over

Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices.

Authors :
Cleary, A.
Glidle, A.
Laybourn, P. J. R.
García-Blanco, S.
Pellegrini, S.
Helfter, C.
Buller, G. S.
Aitchison, J. S.
Cooper, J. M.
Source :
Applied Physics Letters; 8/13/2007, Vol. 91 Issue 7, p071123, 3p, 1 Diagram, 2 Graphs
Publication Year :
2007

Abstract

The authors describe the integration of low-loss optical waveguides with lab-on-a-chip structures to produce an integrated optical-microfluidic platform for time-correlated single-photon counting of fluorescent molecules. Waveguides were fabricated using electron beam densification of planar silica on silicon, eliminating any requirement for depositing upper cladding silica layers. Microfluidic channels were dry etched directly through the waveguides and the device was sealed using a poly(dimethylsiloxane) gasket. Time-resolved fluorescence lifetime measurements of the fluorophore nile blue were used as a model system to demonstrate the operation of the microfluidic device, with dye concentrations as low as 1.5 nM (equivalent to <6000 molecules) being measured. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
91
Issue :
7
Database :
Complementary Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
26369950
Full Text :
https://doi.org/10.1063/1.2772175