Back to Search
Start Over
Ranked Centroid Projection: A Data Visualization Approach With Self-Organizing Maps.
- Source :
- IEEE Transactions on Neural Networks; Feb2008, Vol. 19 Issue 2, p245-259, 15p, 2 Black and White Photographs, 6 Diagrams, 3 Charts, 15 Graphs
- Publication Year :
- 2008
-
Abstract
- The self-organizing map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, the clustering and visualization capabilities of the SOM, especially in the analysis of textual data, i.e., document collections, are reviewed and further developed. A novel clustering and visualization approach based on the SOM is proposed for the task of text mining. The proposed approach first transforms the document space into a multidimensional vector space by means of document encoding. Afterwards, a growing hierarchical SOM (GHSOM) is trained and used as a baseline structure to automatically produce maps with various levels of detail. Following the GHSOM training, the new projection method, namely the ranked centroid projection (RCP), is applied to project the input vectors to a hierarchy of 2-D output maps. The RCP is used as a data analysis tool as well as a direct interface to the data. In a set of simulations, the proposed approach is applied to an illustrative data set and two real-world scientific document collections to demonstrate its applicability. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10459227
- Volume :
- 19
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Neural Networks
- Publication Type :
- Academic Journal
- Accession number :
- 31171851
- Full Text :
- https://doi.org/10.1109/TNN.2007.905858