Back to Search Start Over

A Proof and Generalizations of the Erdős-Ko-Rado Theorem Using the Method of Linearly Independent Polynomials.

Authors :
Graham, R. L.
Korte, B.
Lovász, L.
Wigderson, A.
Ziegler, G. M.
Klazar, Martin
Kratochvíl, Jan
Loebl, Martin
Matoušek, Jiří
Valtr, Pavel
Thomas, Robin
Füredi, Zoltán
Hwang, Kyung-Won
Weichsel, Paul M.
Source :
Topics in Discrete Mathematics; 2006, p215-224, 10p
Publication Year :
2006

Abstract

Our aim is to exhibit a short algebraic proof for the Erdös-Ko-Rado theorem. First, we summarize the method of linearly independent polynomials showing that if X1,..., Xm ⊂ [n] are sets such that Xi does not satisfy any of the set of s intersection conditions Ri but Xi satisfies at least one condition in Rj for all j > i then $$ m \leqslant \left( {\begin{array}{*{20}c} n \\ s \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} n \\ {s - 1} \\ \end{array} } \right) + \cdot \cdot \cdot + \left( {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right) $$. The EKR theorem is follows by carefully choosing the intersection properties and adding extra polynomials. We also prove generalizations for non-uniform families with various intersection conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540336983
Database :
Complementary Index
Journal :
Topics in Discrete Mathematics
Publication Type :
Book
Accession number :
33098386
Full Text :
https://doi.org/10.1007/3-540-33700-8_13