Back to Search Start Over

Dimension Reduction.

Authors :
Gabbay, D. M.
Siekmann, J.
Bundy, A.
Carbonell, J. G.
Pinkal, M.
Uszkoreit, H.
Veloso, M.
Wahlster, W.
Wooldridge, M. J.
Aiello, Luigia Carlucci
Baader, Franz
Bibel, Wolfgang
Bolc, Leonard
Boutilier, Craig
Brachman, Ron
Buchanan, Bruce G.
Cohn, Anthony
Garcez, Artur d'Avila
del Cerro, Luis Fariñas
Furukawa, Koichi
Source :
Machine Learning Techniques for Multimedia; 2008, p91-112, 22p
Publication Year :
2008

Abstract

When data objects that are the subject of analysis using machine learning techniques are described by a large number of features (i.e. the data are high dimension) it is often beneficial to reduce the dimension of the data. Dimension reduction can be beneficial not only for reasons of computational efficiency but also because it can improve the accuracy of the analysis. The set of techniques that can be employed for dimension reduction can be partitioned in two important ways; they can be separated into techniques that apply to supervised or unsupervised learning and into techniques that either entail feature selection or feature extraction. In this chapter an overview of dimension reduction techniques based on this organization is presented and the important techniques in each category are described. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540751700
Database :
Complementary Index
Journal :
Machine Learning Techniques for Multimedia
Publication Type :
Book
Accession number :
33676878
Full Text :
https://doi.org/10.1007/978-3-540-75171-7_4