Back to Search Start Over

Machine Learning Techniques for Face Analysis.

Authors :
Gabbay, D. M.
Siekmann, J.
Bundy, A.
Carbonell, J. G.
Pinkal, M.
Uszkoreit, H.
Veloso, M.
Wahlster, W.
Wooldridge, M. J.
Aiello, Luigia Carlucci
Baader, Franz
Bibel, Wolfgang
Bolc, Leonard
Boutilier, Craig
Brachman, Ron
Buchanan, Bruce G.
Cohn, Anthony
Garcez, Artur d'Avila
del Cerro, Luis Fariñas
Furukawa, Koichi
Source :
Machine Learning Techniques for Multimedia; 2008, p159-187, 29p
Publication Year :
2008

Abstract

In recent years there has been a growing interest in improving all aspects of the interaction between humans and computers with the clear goal of achieving a natural interaction, similar to the way human-human interaction takes place. The most expressive way humans display emotions is through facial expressions. Humans detect and interpret faces and facial expressions in a scene with little or no effort. Still, development of an automated system that accomplishes this task is rather difficult. There are several related problems: detection of an image segment as a face, extraction of the facial expression information, and classification of the expression (e.g., in emotion categories). A system that performs these operations accurately and in real time would be a major step forward in achieving a human-like interaction between the man and machine. In this chapter, we present several machine learning algorithms applied to face analysis and stress the importance of learning the structure of Bayesian network classifiers when they are applied to face and facial expression analysis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540751700
Database :
Complementary Index
Journal :
Machine Learning Techniques for Multimedia
Publication Type :
Book
Accession number :
33676881
Full Text :
https://doi.org/10.1007/978-3-540-75171-7_7