Back to Search Start Over

Indexing Circular Patterns.

Authors :
Hutchison, David
Kanade, Takeo
Kittler, Josef
Kleinberg, Jon M.
Mattern, Friedemann
Mitchell, John C.
Naor, Moni
Nierstrasz, Oscar
Pandu Rangan, C.
Steffen, Bernhard
Sudan, Madhu
Terzopoulos, Demetri
Tygar, Doug
Vardi, Moshe Y.
Weikum, Gerhard
Nakano, Shin-ichi
Rahman, Md. Saidur
Iliopoulos, Costas S.
Rahman, M. Sohel
Source :
WALCOM: Algorithms & Computation; 2008, p46-57, 12p
Publication Year :
2008

Abstract

This paper deals with the Circular Pattern Matching Problem (CPM). In CPM, we are interested in pattern matching between the text $\mathcal T$ and the circular pattern $\mathcal C(\mathcal P)$ of a given pattern $\mathcal P = \mathcal P_1 \ldots \mathcal P_m$. The circular pattern $\mathcal C(\mathcal P)$ is formed by concatenating $\mathcal P_1$ to the right of $\mathcal P_m$. We can view $\mathcal C(\mathcal P)$ as a set of m patterns starting at positions jā€‰āˆˆā€‰[1..m] and wrapping around the end and if any of these patterns matches $\mathcal T$, we find a match for $\mathcal C(\mathcal P)$. In this paper, we present two efficient data structures to index circular patterns. This problem has applications in pattern matching in geometric and astronomical data as well as in computer graphics and bioinformatics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540778905
Database :
Complementary Index
Journal :
WALCOM: Algorithms & Computation
Publication Type :
Book
Accession number :
34227078
Full Text :
https://doi.org/10.1007/978-3-540-77891-2_5