Back to Search Start Over

Electron Correlated Ab Initio Study of Amino Group Flexibility for Improvement of Molecular Mechanics Simulations on Nucleic Acid Conformations and Interactions.

Authors :
Poltev, V. I.
Gonzalez, E.
Deriabina, A.
Martinez, A.
Furmanchuk, A.
Gorb, L.
Leszczynski, J.
Source :
Journal of Biological Physics; Oct2007, Vol. 33 Issue 5-6, p499-514, 16p, 2 Diagrams, 4 Charts, 4 Graphs
Publication Year :
2007

Abstract

High level ab initio studies demonstrate substantial conformational flexibility of amino groups of nucleic acid bases. This flexibility is important for biological functions of DNA. Existing force field models of molecular mechanics do not describe this phenomenon due to a lack of quantitative experimental data necessary for an adjustment of empirical parameters. We have performed extensive calculations of nucleic acid bases at the MP2/6-31G(d,p) level of ab initio theory for broad set of amino group configurations. Two-dimensional maps of energy and geometrical characteristics as functions of two amino hydrogen torsions have been constructed. We approximate the maps by polynomial expressions, which can be used in molecular mechanics calculations. Detailed considerations of these maps enable us to propose a method for determination of numerical coefficients in the developed formulae using restricted sets of points obtained via higher-level calculations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00920606
Volume :
33
Issue :
5-6
Database :
Complementary Index
Journal :
Journal of Biological Physics
Publication Type :
Academic Journal
Accession number :
34684710
Full Text :
https://doi.org/10.1007/s10867-008-9091-2