Back to Search Start Over

The ground-based FTIR network's potential for investigating the atmospheric water cycle.

Authors :
Schneider, M.
Yoshimura, K.
Hase, F.
Blumenstock, T.
Source :
Atmospheric Chemistry & Physics; 2010, Vol. 10 Issue 7, p3427-3442, 16p, 1 Chart, 15 Graphs
Publication Year :
2010

Abstract

We present tropospheric H<superscript>16</superscript> <subscript>2</subscript> O and HD<superscript>16</superscript>O/H<superscript>16</superscript> <subscript>2</subscript> O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared) spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively). We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM). If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/ upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807316
Volume :
10
Issue :
7
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics
Publication Type :
Academic Journal
Accession number :
49831351
Full Text :
https://doi.org/10.5194/acp-10-3427-2010