Back to Search Start Over

Structure and Mössbauer spectroscopy of barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 between 80 K and 300 K.

Authors :
Redhammer, G. J.
Tippelt, G.
Roth, G.
Lottermoser, W.
Amthauer, G.
Source :
Physics & Chemistry of Minerals; Jun2000, Vol. 27 Issue 6, p419-429, 11p
Publication Year :
2000

Abstract

Natural barbosalite Fe<superscript>2+</superscript>Fe<superscript>3+</superscript> <subscript>2</subscript> (PO<subscript>4</subscript>)<subscript>2</subscript>(OH)<subscript>2</subscript> from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of <superscript>57</superscript>Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298 K the title compound is monoclinic, space group P2<subscript>1</subscript>/n, a<subscript> o</subscript> = 7.3294(16) Å, b<subscript> o</subscript> = 7.4921(17) Å, c<subscript> o</subscript> = 7.4148 (18) Å, β = 118.43(3)°, Z = 2. No crystallographic phase transition was observed between 298 K and 110 K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150 K and 180 K are ascribed to the magnetic phase transition of the title compound. At 298 K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe<superscript>2+</superscript> and Fe<superscript>3+</superscript> in octahedral coordination; the area ratio Fe<superscript>3+</superscript>/Fe<superscript>2+</superscript> is exactly two, corresponding to the ideal value. Both the Fe<superscript>2+</superscript> and the Fe<superscript>3+</superscript> sublattice order magnetically below 173 K and exhibit a fully developed magnetic pattern at 160 K. The electric field gradient at the Fe<superscript>2+</superscript> site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to V<subscript>zz</subscript>, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe<superscript>3+</superscript>-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1 1 0] and [−1 1 0] Fe<superscript>3+</superscript>-Fe<superscript>2+</superscript>-Fe<superscript>3+</superscript> trimer, connecting the Fe<superscript>3+</superscript>-chains to each other. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03421791
Volume :
27
Issue :
6
Database :
Complementary Index
Journal :
Physics & Chemistry of Minerals
Publication Type :
Academic Journal
Accession number :
49981816
Full Text :
https://doi.org/10.1007/s002699900078