Back to Search
Start Over
Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree.
- Source :
- Journal of Combinatorial Optimization; May2010, Vol. 19 Issue 4, p471-485, 15p
- Publication Year :
- 2010
-
Abstract
- An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ′<subscript> a</subscript>( G). Let $\mathop{\mathrm{mad}}(G)$ and Δ denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove the following results: (1) If $\mathop{\mathrm{mad}}(G)<3$ and Δ≥3, then χ′<subscript> a</subscript>( G)≤ Δ+2. (2) If $\mathop{\mathrm{mad}}(G)<\frac{5}{2}$ and Δ≥4, or $\mathop{\mathrm{mad}}(G)<\frac{7}{3}$ and Δ=3, then χ′<subscript> a</subscript>( G)≤ Δ+1. (3) If $\mathop{\mathrm{mad}}(G)<\frac{5}{2}$ and Δ≥5, then χ′<subscript> a</subscript>( G)= Δ+1 if and only if G contains adjacent vertices of maximum degree. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13826905
- Volume :
- 19
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Journal of Combinatorial Optimization
- Publication Type :
- Academic Journal
- Accession number :
- 50131623
- Full Text :
- https://doi.org/10.1007/s10878-008-9178-5