Back to Search Start Over

Error-Resilient and Low-Complexity Onboard Lossless Compression of Hyperspectral Images by Means of Distributed Source Coding.

Authors :
Abrardo, Andrea
Barni, Mauro
Magli, Enrico
Nencini, Filippo
Source :
IEEE Transactions on Geoscience & Remote Sensing; Apr2010 Part 1, Vol. 48 Issue 4, p1892-1904, 13p
Publication Year :
2010

Abstract

In this paper, we propose a lossless compression algorithm for hyperspectral images inspired by the distributed-source-coding (DSC) principle. DSC refers to separate compression and joint decoding of correlated sources, which are taken as adjacent bands of a hyperspectral image. This concept is used to design a compression scheme that provides error resilience, very low complexity, and good compression performance. These features are obtained employing scalar coset codes to encode the current band at a rate that depends on its correlation with the previous band, without encoding the prediction error. Iterative decoding employs the decoded version of the previous band as side information and uses a cyclic redundancy code to verify correct reconstruction. We develop three algorithms based on this paradigm, which provide different tradeoffs between compression performance, error resilience, and complexity. Their performance is evaluated on raw and calibrated AVIRIS images and compared with several existing algorithms. Preliminary results of a field-programmable gate array implementation are also provided, which show that the proposed algorithms can sustain an extremely high throughput. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
48
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
50915776
Full Text :
https://doi.org/10.1109/TGRS.2009.2033470