Back to Search Start Over

Sensor Fusion for Predicting Vehicles' Path for Collision Avoidance Systems.

Authors :
Polychronopoulos, A.
Tsogas, M.
Amditis, A.J.
Andreone, L.
Source :
IEEE Transactions on Intelligent Transportation Systems; Sep2007, Vol. 8 Issue 3, p549-562, 14p
Publication Year :
2007

Abstract

Path prediction is the only way that an active safety system can predict a driver's intention. In this paper, a model-based description of the traffic environment is presented - both vehicles and infrastructure - in order to provide, in real time, sufficient information for an accurate prediction of the ego-vehicle's path. The proposed approach is a hierarchical-structured algorithm that fuses traffic environment data with car dynamics in order to accurately predict the trajectory of the ego-vehicle, allowing the active safety system to inform, warn the driver, or intervene when critical situations occur. The algorithms are tested with real data, under normal conditions, for collision warning (CW) and vision-enhancement applications. The results clearly show that this approach allows a dynamic situation and threat assessment and can enhance the capabilities of adaptive cruise control and CW functions by reducing the false alarm rate. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
15249050
Volume :
8
Issue :
3
Database :
Complementary Index
Journal :
IEEE Transactions on Intelligent Transportation Systems
Publication Type :
Academic Journal
Accession number :
52144067
Full Text :
https://doi.org/10.1109/TITS.2007.903439