Back to Search Start Over

Nanostructure and magnetic properties of composite CoPt:C films for extremely high-density recording.

Authors :
Yu, M.
Liu, Y.
Sellmyer, D. J.
Source :
Journal of Applied Physics; 5/1/2000, Vol. 87 Issue 9, p6959, 3p
Publication Year :
2000

Abstract

The nanostructure and magnetic properties of composite CoPt:C films at room temperature were investigated as a function of annealing temperature, carbon concentration, and film thickness. CoPt:C films with a variety of carbon concentrations were fabricated by cosputtering Co, Pt, and C onto water-cooled Si(100) substrates followed by annealing. X-ray diffraction and transmission electron microscopy analyses indicate that nanocrystallites of face-centered-tetragonal (fct) CoPt phase, which has a uniaxial magnetocrystalline anisotropy constant of about 5×10[sup 7] erg/cm[sup 3], can be formed in carbon matrix when the annealing temperature is higher than 600 °C. The grain sizes of the fct CoPt crystallites are about 10 nm and the coercivities can be as high as 12 kOe. Higher annealing temperature and lower carbon concentration generally lead to larger grain sizes and perhaps more complete formation of the fct CoPt phase, and therefore higher coercivities. The coercivity is insensitive to the film thickness until the thickness is smaller than the CoPt grain size, when the coercivity starts to decrease with film thickness. The magnetic activation volumes are typically around 1×10[sup -18] cm[sup 3]. The nanostructure and the associated magnetic properties of these composite CoPt:C films are promising as potential media for extremely high-density recording. © 2000 American Institute of Physics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
87
Issue :
9
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
5400811
Full Text :
https://doi.org/10.1063/1.372899