Back to Search
Start Over
Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation.
- Source :
- Proceedings of the American Mathematical Society; Oct2010, Vol. 139 Issue 3, p943-956, 14p
- Publication Year :
- 2010
-
Abstract
- Here we consider results concerning ill-posedness for the Cauchy problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation, namely, <DIV ALIGN="CENTER" CLASS="mathdisplay"> \begin{displaymath} \left\{ \begin{array}{ll} u_t-\mathscr{H}u_{xx}+u_{xyy}+u^ku... ...b{R}^+, \\ u(x,y,0)=\phi(x,y). \end{array}\right.\tag*{(IVP)} \end{displaymath} For $ k=1$ $ H^{s_1,s_2}(\mathbb{R}^2), s_1,s_2\in \mathbb{R}$ ill-posedness is shown to hold in $ H^{s_1,s_2}(\mathbb{R}^2), 2s_1+s_2<3/2-2/k$, and some particular values of $ s_1,s_2$ [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 139
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 55398420