Back to Search Start Over

Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2.

Authors :
Chou, Yuan-Yi
Gao, Jhen-I
Chang, Shwu-Fen
Chang, Po-Yuan
Lu, Shao-Chun
Source :
FEBS Journal; Jan2011, Vol. 278 Issue 1, p85-96, 12p
Publication Year :
2011

Abstract

This article reports an inhibitory effect of rapamycin on the lipopolysaccharide (LPS)-induced expression of both inducible nitric oxide synthase (iNOS) and granulocyte-colony stimulating factor (G-CSF) in macrophages and its underlying mechanism. The study arose from an observation that rapamycin inhibited the LPS-induced increase in octamer-binding factor-2 (Oct-2) protein levels through a mammalian target of rapamycin (mTOR)-dependent pathway in mouse RAW264.7 macrophages. As both iNOS and G-CSF are potential Oct-2 target genes, we tested the effect of rapamycin on their expression and found that it reduced the LPS-induced increase in iNOS and G-CSF mRNA levels and iNOS and G-CSF protein levels. Blocking of mTOR-signaling using a dominant-negative mTOR expression plasmid resulted in inhibition of the LPS-induced increase in iNOS and G-CSF protein levels, supporting the essential role of mTOR. Forced expression of Oct-2 using the pCG-Oct-2 plasmid overcame the inhibitory effect of rapamycin on the LPS-induced increase in iNOS and G-CSF mRNA levels. Chromatin immunoprecipitation assays showed that LPS enhanced the binding of Oct-2 to the iNOS and G-CSF promoters and that this effect was inhibited by pretreatment with rapamycin. Moreover, RNA interference knockdown of Oct-2 reduced iNOS and G-CSF expression in LPS-treated cells. The inhibitory effect of rapamycin on the LPS-induced increase in Oct-2 protein levels and on the iNOS and G-CSF mRNA levels was also detected in human THP-1 monocyte-derived macrophages. This study demonstrates that rapamycin reduces iNOS and G-CSF expression at the transcription level in LPS-treated macrophages by inhibiting Oct-2 expression. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1742464X
Volume :
278
Issue :
1
Database :
Complementary Index
Journal :
FEBS Journal
Publication Type :
Academic Journal
Accession number :
55773616
Full Text :
https://doi.org/10.1111/j.1742-4658.2010.07929.x