Back to Search
Start Over
Design Flow and Stage Computations in the Teesta River, Bangladesh, Using Frequency Analysis and MIKE 11 Modeling.
- Source :
- Journal of Hydrologic Engineering; Feb2011, Vol. 16 Issue 2, p176-186, 11p, 1 Diagram, 4 Charts, 8 Graphs, 1 Map
- Publication Year :
- 2011
-
Abstract
- A case study was conducted in the Teesta subcatchment in Bangladesh for determining design flood flows and corresponding flood stages for different return periods using frequency analysis and MIKE 11 model. Different distribution functions of frequency analysis were tested for their goodness of fit. The observed discharge data at Kaunia on the river Teesta were used for estimation of design flood. The Pearson type-III distribution was found best fitted by the Kolmogorov-Smirnov, D-index, and L-moment diagram ratio tests, and accordingly 25-, 50-, and 100-year return period design floods were computed. The river network of Teesta River was extracted from SRTM 90-m digital elevation model. The river network of Teesta subcatchment was then simulated by MIKE 11 rainfall-runoff Nedbor-Afstromnings-Model (NAM) and HD model. The resultant time series of river stage was then compared with corresponding observed values. From the model, a stage-discharge relationship (Q-h) curve and respective equation were developed for Kaunia station on the river Teesta. The developed equation determines the corresponding flood stage of estimated flood flow of 25-, 50-, and 100-year return periods. The resulting flows and stages will be useful to design hydraulic structures, prepare flood extent maps, assess vulnerability of flood damage for different return periods, and provide flood forecasting for early warnings of floods. The approach presented would be applicable to similar river basin systems where data are limited and scarce. [ABSTRACT FROM AUTHOR]
- Subjects :
- FLOODS
HYDRODYNAMICS
RUNOFF
FREQUENCIES of oscillating systems
Subjects
Details
- Language :
- English
- ISSN :
- 10840699
- Volume :
- 16
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Journal of Hydrologic Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 57313959
- Full Text :
- https://doi.org/10.1061/(ASCE)HE.1943-5584.0000299