Back to Search Start Over

Influence of Elastic and Inelastic Electron–Phonon Interaction on Quantum Transport in Multigate Silicon Nanowire MOSFETs.

Authors :
Akhavan, Nima Dehdashti
Afzalian, Aryan
Kranti, Abhinav
Ferain, Isabelle
Lee, Chi-Woo
Yan, Ran
Razavi, Pedram
Yu, Ran
Colinge, Jean-Pierre
Source :
IEEE Transactions on Electron Devices; 04/01/2011, Vol. 58 Issue 4, p1029-1037, 9p
Publication Year :
2011

Abstract

This paper presents the effect of different elastic acoustic and inelastic optical electron–phonon interaction mechanisms on quantum transport and electrical characteristics of multigate silicon nanowire FETs. A 3-D quantum–mechanical device simulator based on the nonequilibrium Green's function formalism in the uncoupled mode space that can handle electron–phonon interactions has been developed to extract the physical parameters of the devices. The electron–phonon scattering has been treated by using the self-consistent Born approximation and deformation potential theory. Utilizing this simulator, we show that interaction of the carriers with optical phonons redistributes the energy and momentum of electrons in the transport direction, depending on the energy of the phonon. Optical phonons cause either a reduction of the electron density or an increase of the electron concentration in the channel region, depending on the phonon energy and coupling strength. Finally, we show that the critical length for carriers to get backscattered in the silicon nanowire is directly proportional to the phonon energy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189383
Volume :
58
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Electron Devices
Publication Type :
Academic Journal
Accession number :
59470947
Full Text :
https://doi.org/10.1109/TED.2011.2107521