Back to Search Start Over

A Control Strategy for Islanded Microgrids With DC-Link Voltage Control.

Authors :
Vandoorn, Tine L.
Meersman, Bart
Degroote, Lieven
Renders, Bert
Vandevelde, Lieven
Source :
IEEE Transactions on Power Delivery; 04/01/2011, Vol. 26 Issue 2, p703-713, 11p
Publication Year :
2011

Abstract

New opportunities for optimally integrating the increasing number of distributed-generation (DG) units in the power system rise with the introduction of the microgrid. Most DG units are connected to the microgrid via a power-electronic inverter with dc link. Therefore, new control methods for these inverters need to be developed in order to exploit the DG units as effectively as possible in case of an islanded microgrid. In the literature, most control strategies are based on the conventional transmission grid control or depend on a communication infrastructure. In this paper, on the other hand, an alternative control strategy is proposed based on the specific characteristics of islanded low-voltage microgrids. The microgrid power is balanced by using a control strategy that modifies the set value of the rms microgrid voltage at the inverter ac side as a function of the dc-link voltage. In case a certain voltage, which is determined by a constant-power band, is surpassed, this control strategy is combined with P/V-droop control. This droop controller changes the output power of the DG unit and its possible storage devices as a function of the grid voltage. In this way, voltage-limit violation is avoided. The constant-power band depends on the characteristics of the generator to avoid frequent changes of the power of certain DG units. In this paper, it is concluded that the new control method shows good results in power sharing, transient issues, and stability. This is achieved without interunit communication, which is beneficial concerning reliability issues, and an optimized integration of the renewable energy sources in the microgrid is obtained. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858977
Volume :
26
Issue :
2
Database :
Complementary Index
Journal :
IEEE Transactions on Power Delivery
Publication Type :
Academic Journal
Accession number :
59569164
Full Text :
https://doi.org/10.1109/TPWRD.2010.2095044