Back to Search
Start Over
Global Existence and Asymptotic Behavior of Solutions for Some Nonlinear Hyperbolic Equation.
- Source :
- Journal of Inequalities & Applications; 2010, Vol. 2010, p1-10, 10p
- Publication Year :
- 2010
-
Abstract
- The initial boundary value problem for a class of hyperbolic equation with nonlinear dissipative term u<subscript>tt</subscript> - Σ<superscript>n</superscript><subscript>t=1</subscript>(∂/∂xi)(∣∂u/∂xi∣<superscript>p-2</superscript>(∂u/∂xi))+a∣u<subscript>t</subscript>∣<superscript>q-2</superscript>u<subscript>t</subscript> = b∣u∣<superscript>r-2</superscript>u in a bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set in W<superscript>1,p</superscript><subscript>0</subscript> (Ω) and show the asymptotic behavior of the global solutions through the use of an important lemma of Komornik. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10255834
- Volume :
- 2010
- Database :
- Complementary Index
- Journal :
- Journal of Inequalities & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 63992834
- Full Text :
- https://doi.org/10.1155/2010/895121