Back to Search Start Over

Global Existence and Asymptotic Behavior of Solutions for Some Nonlinear Hyperbolic Equation.

Authors :
Yaojun Ye
Source :
Journal of Inequalities & Applications; 2010, Vol. 2010, p1-10, 10p
Publication Year :
2010

Abstract

The initial boundary value problem for a class of hyperbolic equation with nonlinear dissipative term u<subscript>tt</subscript> - Σ<superscript>n</superscript><subscript>t=1</subscript>(∂/∂xi)(∣∂u/∂xi∣<superscript>p-2</superscript>(∂u/∂xi))+a∣u<subscript>t</subscript>∣<superscript>q-2</superscript>u<subscript>t</subscript> = b∣u∣<superscript>r-2</superscript>u in a bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set in W<superscript>1,p</superscript><subscript>0</subscript> (Ω) and show the asymptotic behavior of the global solutions through the use of an important lemma of Komornik. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10255834
Volume :
2010
Database :
Complementary Index
Journal :
Journal of Inequalities & Applications
Publication Type :
Academic Journal
Accession number :
63992834
Full Text :
https://doi.org/10.1155/2010/895121