Back to Search Start Over

Etude des ω-PI Algebres Commutatives de Degre 4: II. Algebres Non Barycentriques Invariantes par Gametisation.

Authors :
Nourigat et, Michelle
Varro, Richard
Source :
Communications in Algebra; Aug2011, Vol. 39 Issue 8, p2764-2778, 15p
Publication Year :
2011

Abstract

In this article we study the algebras satisfying the ω-polynomial identity x2x2 - x4 = δ(x2 - x) with δ ≠ 0 but do not satisfy any monomial identities of degree ≤4. We show that there exist such algebras for all δ ≠ 0 and they have a unique baric function. We give conditions for the existence of idempotents of weight 0 or 1, and we construct the three Peirce decompositions associated to these idempotent elements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00927872
Volume :
39
Issue :
8
Database :
Complementary Index
Journal :
Communications in Algebra
Publication Type :
Academic Journal
Accession number :
64374556
Full Text :
https://doi.org/10.1080/00927872.2010.490539