Back to Search Start Over

GlcNAcylation of histone H2B facilitates its monoubiquitination.

Authors :
Fujiki, Ryoji
Hashiba, Waka
Sekine, Hiroki
Yokoyama, Atsushi
Chikanishi, Toshihiro
Ito, Saya
Imai, Yuuki
Kim, Jaehoon
He, Housheng Hansen
Igarashi, Katsuhide
Kanno, Jun
Ohtake, Fumiaki
Kitagawa, Hirochika
Roeder, Robert G.
Brown, Myles
Kato, Shigeaki
Source :
Nature; 12/22/2011, Vol. 480 Issue 7378, p557-560, 4p, 4 Graphs
Publication Year :
2011

Abstract

Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00280836
Volume :
480
Issue :
7378
Database :
Complementary Index
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
69919420
Full Text :
https://doi.org/10.1038/nature10656