Back to Search Start Over

Evidence of Inbreeding Depression on Human Height.

Authors :
McQuillan, Ruth
Eklund, Niina
Pirastu, Nicola
Kuningas, Maris
McEvoy, Brian P.
Esko, Tõnu
Corre, Tanguy
Davies, Gail
Kaakinen, Marika
Lyytikäinen, Leo-Pekka
Kristiansson, Kati
Havulinna, Aki S.
Gögele, Martin
Vitart, Veronique
Tenesa, Albert
Hayward, Caroline
Johansson, Åsa
Boban, Mladen
Ulivi, Sheila
Robino, Antonietta
Source :
PLoS Genetics; Jul2012, Vol. 8 Issue 7, p1-14, 14p, 3 Charts, 3 Graphs
Publication Year :
2012

Abstract

Stature is a classical and highly heritable complex trait, with 80%--90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS) have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important 2 220 confounder (χ² = 83.89, df = 1; p = 5.2x10<superscript>-20</superscript> ). There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT), paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537390
Volume :
8
Issue :
7
Database :
Complementary Index
Journal :
PLoS Genetics
Publication Type :
Academic Journal
Accession number :
79458901
Full Text :
https://doi.org/10.1371/journal.pgen.1002655