Back to Search Start Over

A Dynamic Response Regulator Protein Modulates G-Protein--Dependent Polarity in the Bacterium Myxococcus xanthus.

Authors :
Yong Zhang
Guzzo, Mathilde
Ducret, Adrien
Yue-Zhong Li
Mignot, Täm
Source :
PLoS Genetics; Aug2012, Vol. 8 Issue 8, Special section p1-11, 11p, 5 Diagrams, 2 Graphs
Publication Year :
2012

Abstract

Migrating cells employ sophisticated signal transduction systems to respond to their environment and polarize towards attractant sources. Bacterial cells also regulate their polarity dynamically to reverse their direction of movement. In Myxococcus xanthus, a GTP-bound Ras-like G-protein, MglA, activates the motility machineries at the leading cell pole. Reversals are provoked by pole-to-pole switching of MglA, which is under the control of a chemosensory-like signal transduction cascade (Frz). It was previously known that the asymmetric localization of MglA at one cell pole is regulated by MglB, a GTPase Activating Protein (GAP). In this process, MglB specifically localizes at the opposite lagging cell pole and blocks MglA localization at that pole. However, how MglA is targeted to the leading pole and how Frz activity switches the localizations of MglA and MglB synchronously remained unknown. Here, we show that MglA requires RomR, a previously known response regulator protein, to localize to the leading cell pole efficiently. Specifically, RomR-MglA and RomR-MglB complexes are formed and act complementarily to establish the polarity axis, segregating MglA and MglB to opposite cell poles. Finally, we present evidence that Frz signaling may regulate MglA localization through RomR, suggesting that RomR constitutes a link between the Frz-signaling and MglAB polarity modules. Thus, in Myxococcus xanthus, a response regulator protein governs the localization of a small G-protein, adding further insight to the polarization mechanism and suggesting that motility regulation evolved by recruiting and combining existing signaling modules of diverse origins. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15537390
Volume :
8
Issue :
8
Database :
Complementary Index
Journal :
PLoS Genetics
Publication Type :
Academic Journal
Accession number :
79968377
Full Text :
https://doi.org/10.1371/journal.pgen.1002872