Back to Search Start Over

Glycolaldehyde-Modified Low Density Lipoprotein Leads Macrophages to Foam Cells via the Macrophage Scavenger Receptor1.

Authors :
Jinnouchi, Yoshiteru
Sano, Hiroyuki
Nagai, Ryoji
Hakamata, Hideki
Kodama, Tatsuhiko
Suzuki, Hiroshi
Yoshida, Masaki
Ueda, Shoichi
Horiuchi, Seikoh
Source :
Journal of Biochemistry; 1998, Vol. 123 Issue 6, p1208-1217, 10p
Publication Year :
1998

Abstract

It was shown that proteins modified with advanced glycation end products (AGE) are effectively endocytosed by macrophages or macrophage-derived cells in vitro, and immunohistochemical studies involving anti-AGE antibodies demonstrated the accumulation of AGE-modified proteins (AGE-proteins) in macrophage-derived foam cells in human atherosclerotic lesions in situ, suggesting the involvement of AGE-modified LDL in the atherogenic process in vivo. To examine this suggestion, LDL was modified with glycolaldehyde, a highly reactive intermediate of the Maillard reaction. Physicochemically, glycolaldehyde-modified LDL (GA-LDL) was characterized by increases in negative charge, fluorescence intensity, and reactivity to anti-AGE antibodies, properties highly similar to those of AGE-proteins. The cellular interaction of GA-LDL with mouse peritoneal macrophages showed that GA-LDL was specifically recognized and endocytosed, followed by lysosomal degradation. The endocytic uptake of GA-LDL by these cells was competitively inhibited by acetylated LDL (acetyl-LDL), and the endocytic degradation of acetyl-LDL was also competed for by GA-LDL. Furthermore, incubation of GA-LDL with these macrophages and Chinese hamster ovary cells overexpressing the macrophage scavenger receptor (MSR), but not with peritoneal macrophages from MSR-knockout mice, led to the intracellular accumulation of cholesteryl esters (CE). These results raised the possibility that AGEmodified LDL, if available in situ, is taken up by macrophages mainly via MSR and then contributes to foam cell formation in early atherosclerotic lesions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0021924X
Volume :
123
Issue :
6
Database :
Complementary Index
Journal :
Journal of Biochemistry
Publication Type :
Academic Journal
Accession number :
80100891
Full Text :
https://doi.org/10.1093/oxfordjournals.jbchem.a022062