Back to Search Start Over

A comprehensive benchmarking system for evaluating global vegetation models.

Authors :
Kelley, D. I.
Prentice, I. Colin
Harrison, S. P.
Wang, H.
Simard, M.
Fisher, J. B.
Willis, K. O.
Source :
Biogeosciences Discussions; 2012, Vol. 9 Issue 11, p15723-15785, 63p
Publication Year :
2012

Abstract

We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). SDBM reproduces observed CO<subscript>2</subscript> seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO<subscript>2</subscript>), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18106277
Volume :
9
Issue :
11
Database :
Complementary Index
Journal :
Biogeosciences Discussions
Publication Type :
Academic Journal
Accession number :
84012795
Full Text :
https://doi.org/10.5194/bgd-9-15723-2012