Back to Search Start Over

Glitch-Free NAND-Based Digitally Controlled Delay-Lines.

Authors :
De Caro, Davide
Source :
IEEE Transactions on Very Large Scale Integration (VLSI) Systems; Jan2013, Vol. 21 Issue 1, p55-66, 12p
Publication Year :
2013

Abstract

The recently proposed nand-based digitally controlled delay-lines (DCDL) present a glitching problem which may limit their employ in many applications. This paper presents a glitch-free nand-based DCDL which overcame this limitation by opening the employ of nand-based DCDLs in a wide range of applications. The proposed nand-based DCDL maintains the same resolution and minimum delay of previously proposed nand-based DCDL. The theoretical demonstration of the glitch-free operation of proposed DCDL is also derived in the paper. Following this analysis, three driving circuits for the delay control-bits are also proposed. Proposed DCDLs have been designed in a 90-nm CMOS technology and compared, in this technology, to the state-of-the-art. Simulation results show that novel circuits result in the lowest resolution, with a little worsening of the minimum delay with respect to the previously proposed DCDL with the lowest delay. Simulations also confirm the correctness of developed glitching model and sizing strategy. As example application, proposed DCDL is used to realize an All-digital spread-spectrum clock generator (SSCG). The employ of proposed DCDL in this circuit allows to reduce the peak-to-peak absolute output jitter of more than the 40% with respect to a SSCG using three-state inverter based DCDLs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10638210
Volume :
21
Issue :
1
Database :
Complementary Index
Journal :
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Publication Type :
Academic Journal
Accession number :
84489714
Full Text :
https://doi.org/10.1109/TVLSI.2011.2181547