Back to Search Start Over

Temperature-Dependent Structural Changes of Parkinson's Alpha-Synuclein Reveal the Role of Pre- Existing Oligomers in Alpha-Synuclein Fibrillization.

Authors :
Ariesandi, Winny
Chi-Fon Chang
Tseng-Erh Chen
Yun-Ru Chen
Source :
PLoS ONE; Jan2013, Vol. 8 Issue 1, Special section p1-10, 10p
Publication Year :
2013

Abstract

Amyloid fibrils of α-synuclein are the main constituent of Lewy bodies deposited in substantial nigra of Parkinson's disease brains. α-Synuclein is an intrinsically disordered protein lacking compact secondary and tertiary structures. To enhance the understanding of its structure and function relationship, we utilized temperature treatment to study α-synuclein conformational changes and the subsequent effects. We found that after 1 hr of high temperature pretreatment, >80°C, asynuclein fibrillization was significantly inhibited. However, the temperature melting coupled with circular dichroism spectra showed that α-synuclein was fully reversible and the NMR studies showed no observable structural changes of α-synuclein after 95°C treatment. By using cross-linking and analytical ultracentrifugation, rare amount of pre-existing α-synuclein oligomers were found to decrease after the high temperature treatment. In addition, a small portion of C-terminal truncation of α-synuclein also occurred. The reduction of pre-existing oligomers of α-synuclein may contribute to less seeding effect that retards the kinetics of amyloid fibrillization. Overall, our results showed that the pre-existing oligomeric species is a key factor contributing to α-synuclein fibrillization. Our results facilitate the understanding of α-synuclein fibrillization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
1
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
85382771
Full Text :
https://doi.org/10.1371/journal.pone.0053487