Back to Search Start Over

NCTU-GR 2.0: Multithreaded Collision-Aware Global Routing With Bounded-Length Maze Routing.

Authors :
Liu, Wen-Hao
Kao, Wei-Chun
Li, Yih-Lang
Chao, Kai-Yuan
Source :
IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems; May2013, Vol. 32 Issue 5, p709-722, 14p
Publication Year :
2013

Abstract

Modern global routers employ various routing methods to improve routing speed and quality. Maze routing is the most time-consuming process for existing global routing algorithms. This paper presents two bounded-length maze routing (BLMR) algorithms (optimal-BLMR and heuristic-BLMR) that perform much faster routing than traditional maze routing algorithms. In addition, a rectilinear Steiner minimum tree aware routing scheme is proposed to guide heuristic-BLMR and monotonic routing to build a routing tree with shorter wirelength. This paper also proposes a parallel multithreaded collision-aware global router based on a previous sequential global router (SGR). Unlike the partitioning-based strategy, the proposed parallel router uses a task-based concurrency strategy. Finally, a 3-D wirelength optimization technique is proposed to further refine the 3-D routing results. Experimental results reveal that the proposed SGR uses less wirelength and runs faster than most of other state-of-the-art global routers with a different set of parameters refid="ref12"/ , refid="ref16"/, refid="ref17"/, refid="ref20"/ . Compared to the proposed SGR, the proposed parallel router yields almost the same routing quality with average 2.71 and 3.12-fold speedup on overflow-free and hard-to-route cases, respectively, when running on a 4-core system. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
02780070
Volume :
32
Issue :
5
Database :
Complementary Index
Journal :
IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems
Publication Type :
Academic Journal
Accession number :
87108948
Full Text :
https://doi.org/10.1109/TCAD.2012.2235124