Back to Search
Start Over
NCTU-GR 2.0: Multithreaded Collision-Aware Global Routing With Bounded-Length Maze Routing.
- Source :
- IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems; May2013, Vol. 32 Issue 5, p709-722, 14p
- Publication Year :
- 2013
-
Abstract
- Modern global routers employ various routing methods to improve routing speed and quality. Maze routing is the most time-consuming process for existing global routing algorithms. This paper presents two bounded-length maze routing (BLMR) algorithms (optimal-BLMR and heuristic-BLMR) that perform much faster routing than traditional maze routing algorithms. In addition, a rectilinear Steiner minimum tree aware routing scheme is proposed to guide heuristic-BLMR and monotonic routing to build a routing tree with shorter wirelength. This paper also proposes a parallel multithreaded collision-aware global router based on a previous sequential global router (SGR). Unlike the partitioning-based strategy, the proposed parallel router uses a task-based concurrency strategy. Finally, a 3-D wirelength optimization technique is proposed to further refine the 3-D routing results. Experimental results reveal that the proposed SGR uses less wirelength and runs faster than most of other state-of-the-art global routers with a different set of parameters refid="ref12"/ , refid="ref16"/, refid="ref17"/, refid="ref20"/ . Compared to the proposed SGR, the proposed parallel router yields almost the same routing quality with average 2.71 and 3.12-fold speedup on overflow-free and hard-to-route cases, respectively, when running on a 4-core system. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 02780070
- Volume :
- 32
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems
- Publication Type :
- Academic Journal
- Accession number :
- 87108948
- Full Text :
- https://doi.org/10.1109/TCAD.2012.2235124