Back to Search Start Over

Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (δ13C): implications for assessing physiological forcing.

Authors :
Bodin, Per E.
Gagen, Mary
McCarroll, Danny
Loader, Neil J.
Jalkanen, Risto
Robertson, Iain
R Switsur, Vincent
Waterhouse, John S.
Woodley, Ewan J.
Young, Giles H. F.
Alton, Paul B.
Source :
Global Change Biology; Jun2013, Vol. 19 Issue 6, p1709-1719, 11p, 7 Charts, 1 Graph
Publication Year :
2013

Abstract

Accurate modelling of long-term changes in plant stomatal functioning is vital to global climate change studies because changes in evapotranspiration influence temperature via physiological forcing of the climate. Various stomatal models are included in land surface schemes, but their robustness over longer timescales is difficult to validate. We compare the performance of three stomatal models, varying in their degree of complexity, and coupled to a land surface model. This is carried out by simulating the carbon isotope ratio of tree leaves (δ<superscript>13</superscript>C<subscript>leaf</subscript>) over a period of 53 years, and comparing the results with carbon isotope ratios obtained from tree rings (δ<superscript>13</superscript>C<subscript>stem</subscript>) measured at six sites in northern Europe. All three stomatal models fail to capture the observed interannual variability in the measured δ<superscript>13</superscript>C<subscript>stem</subscript> time series. However, the Soil-Plant-Atmosphere ( SPA) model performs significantly better than the Ball-Berry ( BB) or COX models when tested for goodness-of-fit against measured δ<superscript>13</superscript>C<subscript>stem</subscript>. The δ<superscript>13</superscript>C<subscript>leaf</subscript> time series simulated using the SPA model are significantly positively correlated ( P < 0.05) with measured results over the full time period tested, at all six sites. The SPA model underestimates interannual variability measured in δ<superscript>13</superscript>C<subscript>stem</subscript>, but is no worse than the BB model and significantly better than the COX model. The inability of current models to adequately replicate changes in stomatal response to rising levels of CO<subscript>2</subscript> concentrations, and thus to quantify the associated physiological forcing, warrants further investigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13541013
Volume :
19
Issue :
6
Database :
Complementary Index
Journal :
Global Change Biology
Publication Type :
Academic Journal
Accession number :
87391938
Full Text :
https://doi.org/10.1111/gcb.12192