Back to Search Start Over

CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity.

Authors :
Su, Jianmei
Bao, Peng
Bai, Tenglong
Deng, Lin
Wu, Hui
Liu, Fan
He, Jin
Source :
PLoS ONE; Apr2013, Vol. 8 Issue 4, p1-13, 13p
Publication Year :
2013

Abstract

Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl<subscript>2</subscript>. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The K<subscript>m</subscript>, V<subscript>max</subscript> and k<subscript>cat</subscript> values towards Mn(II) were 14.85±1.17 mM, 3.01×10<superscript>−6</superscript>±0.21 M·min<superscript>−1</superscript> and 0.32±0.02 s<superscript>−1</superscript>, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
4
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
87677545
Full Text :
https://doi.org/10.1371/journal.pone.0060573