Back to Search Start Over

Rosuvastatin Enhances Angiogenesis via eNOS-Dependent Mobilization of Endothelial Progenitor Cells

Authors :
Zhou, Junlan
Cheng, Min
Liao, Yu-Hua
Hu, Yu
Wu, Min
Wang, Qing
Qin, Bo
Wang, Hong
Zhu, Yan
Gao, Xiu-Mei
Goukassian, David
Zhao, Ting C.
Tang, Yao-Liang
Kishore, Raj
Qin, Gangjian
Source :
PLoS ONE; May2013, Vol. 8 Issue 5, p1-7, 7p
Publication Year :
2013

Abstract

Circulating endothelial progenitor cells (circEPCs) of bone marrow (BM) origin contribute to postnatal neovascularization and represent a potential therapeutic target for ischemic disease. Statins are beneficial for ischemia disease and have been implicated to increase neovascularization via mechanisms independent of lipid lowering. However, the effect of Statins on EPC function is not completely understood. Here we sought to investigate the effects of Rosuvastatin (Ros) on EPC mobilization and EPC-mediated neovascularization during ischemic injury. In a mouse model of surgically-induced hindlimb ischemia (HLI), treatment of mice with low dose (0.1 mg/kg) but not high dose (5 mg/kg) significantly increased capillary density and accelerated blood flow recovery, as compared to saline-treated group. When HLI was induced in mice that had received Tie2/LacZ BM transplantation, Ros treatment led a significantly larger amount of endothelial cells (ECs) of BM origin incorporated at ischemic sites than saline. After treatment of mice with a single low dose of Ros, circEPCs significantly increased from 2 h, peaked at 4 h, declined until 8 h. In a growth-factor reduced Matrigel plug-in assay, Ros treatment for 5 d induced endothelial lineage differentiation in vivo. Interestingly, the enhanced circEPCs and post-HLI neovascularization stimulated by Ros were blunted in mice deficient in endothelial nitric oxide synthase (eNOS), and Ros increased p-Akt/p-eNOS levels in EPCs in vitro, indicating these effects of Ros are dependent on eNOS activity. We conclude that Ros increases circEPCs and promotes their de novo differentiation through eNOS pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
5
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
88375586
Full Text :
https://doi.org/10.1371/journal.pone.0063126