Back to Search
Start Over
Outcompeting GC for the detection of legacy chlorinated pesticides: online-SPE UPLC APCI/MSMS detection of endosulfans at part per trillion levels.
Outcompeting GC for the detection of legacy chlorinated pesticides: online-SPE UPLC APCI/MSMS detection of endosulfans at part per trillion levels.
- Source :
- Analytical & Bioanalytical Chemistry; Jul2013, Vol. 405 Issue 18, p5887-5899, 13p
- Publication Year :
- 2013
-
Abstract
- Endosulfan, the last remaining organochlorine pesticide, has been the subject of a number of international regulations and restriction/banning action plans worldwide. Occurrence of endosulfan residues in South Florida environments has been widely described in the literature for more than two decades. This work describes a selective, sensitive, and fast online solid-phase extraction (SPE) method coupled with liquid chromatography separation and tandem mass spectrometry (LC-MS/MS) for the determination of endosulfan isomers and endosulfan sulfate in water samples at low part per trillion levels with very little sample preparation. A negative atmospheric pressure chemical ionization source was carefully optimized to produce reproducible spectra of the target compounds with no adduct ion formation. Selected reaction monitoring transitions were monitored and quantitation was performed against a per-deuterated internal standard β-endosulfan (d4). The automated online SPE clean-up was performed using only 20 mL of untreated water sample prior to LC-MS/MS analysis. The method was capable of separating and quantifying endosulfan within a 24-min run using acetonitrile and water as mobile phases and presenting statistically calculated method detection limits of 3, 10, and 7 ng/L for endosulfan sulfate, α-endosulfan, and β-endosulfan, respectively. In addition, a QuEChERS method was successfully developed and applied for endosulfan determination in sediments/soils, floating and submerged algal mats, and small fish. Minimal matrix effects were observed in all matrices analyzed and recoveries for all analytes ranged from 50-144 %. The developed methodology was applied to monitor the occurrence and to assess the potential transport of endosulfan in the Loveland Slough watershed, an area adjacent to Everglades National Park showing long-term contamination with endosulfans. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16182642
- Volume :
- 405
- Issue :
- 18
- Database :
- Complementary Index
- Journal :
- Analytical & Bioanalytical Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 88428531
- Full Text :
- https://doi.org/10.1007/s00216-013-6764-x