Back to Search Start Over

ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS.

Authors :
DA CUNHA, ELISABETE
GROVES, BRENT
WALTER, FABIAN
DECARLI, ROBERTO
WEISS, AXEL
BERTOLDI, FRANK
CARILLI, CHRIS
DADDI, EMANUELE
ELBAZ, DAVID
IVISON, ROB
MAIOLINO, ROBERTO
RIECHERS, DOMINIK
RIX, HANS-WALTER
SARGENT, MARK
SMAIL, IAN
Source :
Astrophysical Journal; 3/20/2013, Vol. 766 Issue 1, p1-12, 12p
Publication Year :
2013

Abstract

Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0004637X
Volume :
766
Issue :
1
Database :
Complementary Index
Journal :
Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
90188856
Full Text :
https://doi.org/10.1088/0004-637X/766/1/13