Back to Search Start Over

Ar– Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China: petrogenesis and tectonic implications.

Authors :
Liu, Bin
Ma, Chang-Qian
Zhang, Jin-Yang
Xiong, Fu-Hao
Huang, Jian
Jiang, Hong-An
Source :
International Geology Review; Jan2014, Vol. 56 Issue 1, p57-73, 17p
Publication Year :
2014

Abstract

The early Permian Xiaomiao mafic dike swarm in the East Kunlun orogenic belt (EKOB) provides an excellent opportunity to study the petrogenesis of such swarms developed in supra-subduction zone environments, and to investigate the early plate tectonic history of the Palaeo-Tethyan Ocean. Hornblende40Ar–39Ar dating results indicate that the mafic dikes formed in the early Permian (277.76 ± 2.72 Ma). The Xiaomiao mafic hypabyssals have the following compositional range: SiO2 = 46.55–55.75%, MgO = 2.80–7.38%, Mg# = 36–61, and (Na2O + K2O) = 2.87–4.95%. Chemically, they display calc-alkali affinities, ranging in composition from gabbro to gabbroic diorite. All analysed dikes are enriched in light rare earth elements and large-ion lithophile elements (e.g. Rb and Ba), but are depleted in heavy rare earth elements and high field strength elements (e.g. Nb, Ta, and Ti). Their ISrand ϵNd(t) values range from 0.707 to 0.715 and –2.60 to +2.91, respectively. They are geochemically similar to subduction-related basaltic rocks (e.g. island arc basalt), but differ from E-MORB and N-MORB. Petrographic and major element data reveal that fractional crystallizations of clinopyroxene, olivine, hornblende, and Fe–Ti oxides may have occurred during magma evolution, but that crustal contamination was minor. Based on geochemical and Sr–Nd isotopic bulk-rock compositions, we suggest that the mafic dikes were likely generated by 10–20% partial melting of a spinel + minor garnet lherzolite mantle source metasomatized by subducted, slab-derived fluids, and minor sediments. Based on our results, we propose that the early evolution of the Palaeo-Tethyan Ocean involved the spreading and initial subduction of the Carboniferous to early Permian ocean basin followed by late Permian subduction, which generated the magmatic arc. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00206814
Volume :
56
Issue :
1
Database :
Complementary Index
Journal :
International Geology Review
Publication Type :
Academic Journal
Accession number :
90563366
Full Text :
https://doi.org/10.1080/00206814.2013.818804