Back to Search Start Over

Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance.

Authors :
Choi, Yang-Seok
Shirani-Mehr, Hooman
Source :
IEEE Transactions on Wireless Communications; Dec2013, Vol. 12 Issue 12, p5992-6010, 19p
Publication Year :
2013

Abstract

Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Moreover, at high traffic load, the gain of STR system can be tremendously large since the throughput of non-STR system is close to zero at heavy traffic due to severe collisions. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level. We show that BS-BS interference can be suppressed sufficiently enough to be less than thermal noise power, and with favorable UE-UE channel model, capacities close to double are observed both in downlink (DL) and uplink (UL). When UE-UE interference is larger than DL co-channel interferences, we propose a simple and "non-cooperative" technique in order to reduce UE-UE interference. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
15361276
Volume :
12
Issue :
12
Database :
Complementary Index
Journal :
IEEE Transactions on Wireless Communications
Publication Type :
Academic Journal
Accession number :
93280568
Full Text :
https://doi.org/10.1109/TWC.2013.101713.121152