Back to Search Start Over

Steam reforming of ethanol over skeletal Ni-based catalysts: A temperature programmed desorption and kinetic study.

Authors :
Zhang, Chengxi
Li, Shuirong
Wu, Gaowei
Huang, Zhiqi
Han, Zhiping
Wang, Tuo
Gong, Jinlong
Source :
AIChE Journal; Feb2014, Vol. 60 Issue 2, p635-644, 10p
Publication Year :
2014

Abstract

An investigation on reaction scheme and kinetics for ethanol steam reforming on skeletal nickel catalysts is described. Catalytic activity of skeletal nickel catalyst for low-temperature steam reforming has been studied in detail, and the reasons for its high reactivity for H<subscript>2</subscript> production are attained by probe reactions. Higher activity of water gas shift reaction and methanation contributes to the low CO selectivity. Cu and Pt addition can promote WGSR and suppress methanation, and, thus, improve H<subscript>2</subscript> production. A reaction scheme on skeletal nickel catalyst has been proposed through temperature programmed reaction spectroscopy experiments. An Eley-Rideal model is put forward for kinetic studies, which contains three surface reactions: ethanol decomposition, water gas shift reaction, and methane steam reforming reaction. The kinetics was studied at 300-400°C using a randomized algorithms method and a least-squares method to solve the differential equations and fit the experimental data; the goodness of fit obtained with this model is above 0.95. The activation energies for the ethanol decomposition, methane steam reforming, and water gas shift reaction are 187.7 kJ/mol, 138.5 kJ/mol and 52.8 kJ/mol, respectively. Thus, ethanol decomposition was determined to be the rate determining reaction of ethanol steam reforming on skeletal nickel catalysts. © 2013 American Institute of Chemical Engineers AIChE J 60: 635-644, 2014 [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00011541
Volume :
60
Issue :
2
Database :
Complementary Index
Journal :
AIChE Journal
Publication Type :
Academic Journal
Accession number :
93629675
Full Text :
https://doi.org/10.1002/aic.14264